EXERCISE PHYSIOLOGY ILLUSTRATED:

Moving Oxygen from Air to Muscle

KOLKHORST, PhD AND BUONO, PhD

CO₂

TABLE OF CONTENTS

Chapter 1 Getting started in Physiology of exercise

"Physiology Is Life!"

What Is Exercise Physiology?

How Did Exercise Physiology Begin?

Pioneers in Physiology Harvard Fatigue Laboratory and Its Legacy Exercise Physiology in the 1950s and 1960s Exercise Physiology Comes of Age

Joining a Professional Organization

Using the Scientific Method to Acquire Knowledge

Understanding and Interpreting Scientific Data

Expressing Numbers as Relative or Absolute Determining Meaningful Differences with Statistics Summarizing Findings Visually with Graphs

CHAPTER 2 NEURAL CONTROL OF SKELETAL MUSCLE

The Major Divisions of the Human Nervous System

Modifying Movement Through Sensory Information

Muscle Spindles Golgi Tendon Organs

Types of Movement

Reflexive Movement Rhythmic Movement Voluntary Movement Cerebral Cortex Subcortical Brain Areas Brain Stem Spinal Cord Exercise Begins and Ends in the Brain

Neurons-The Functional Unit of the Nervous System

Electrical Charge of Neuron Plasma Membranes Conducting Information as Electrical Signals Graded Potentials Action Potentials The All-or-None Principle

Ion Movement

Refractory Periods Control Action Potentials Saltatory Conduction Increases Conduction Velocity

Stimulation of Skeletal Muscle at the Neuromuscular Junction

Stopping the Signal Motor Unit

CHAPTER 3 The respiratory system: Getting oxygen from Air to blood

Ventilation of the Lungs

Conducting Passages Alveoli

Changes in Lung Volume

Tidal Volume

Minute Ventilation

Tidal Volume and Respiratory Responses to Exercise

External Respiration: Gas Exchange Between Lungs and Blood

Gas Exchange Ventilation-Perfusion of the Lungs

Gas Transport in Blood

Transit Time

Oxygen Transport in Blood Bohr Effect Carbon Dioxide Transport

Mechanisms for Regulating Ventilation

Ventilatory Control During Rest Ventilatory Control During Exercise

CHAPTER 4 THE HEART: MOVING OXYGEN AND BLOOD

The Heart: A Muscle Pump with Four Chambers

Heart Valves and One-Directional Blood Flow Cardiac Cycle

Electrical Activity in the Heart

Action Potentials in Cardiac Fibers Autorhythmic Cells Cardiac Conduction System Autonomic Control of the Heart Electrocardiogram

Cardiac Muscle Fibers

Using Stem Cell Transplantation to Repair Damaged Hearts

Calcium Controls Cardiac Fiber Contraction

The Rate at Which the Heart Pumps Blood

Cardiac Output Stroke Volume Equals Venous Return

CHAPTER 5 THE CIRCULATORY SYSTEM AND ITS RESPONSES TO EXERCISE

Cardiovascular Control Center

Cardiac Output Response to Exercise

Increase in Venous Return Heart Rate Response to Exercise Increased Work of the Myocardium

The Circulatory System: Transporting Blood And Oxygen

Blood Vessels Control of Blood Flow During Exercise Local Factors that Control Blood Flow Redistribution of Blood

Blood Pressure and Blood Flow

Total Peripheral Resistance Systolic and Diastolic Pressures

Circulatory Responses to Exercise

Total Peripheral Resistance Response to Exercise Blood Pressure Response to Exercise

CHAPTER 6 Skeletal Muscle Structure AND Function

Skeletal Muscle Anatomy: Making Movement Possible Gross Anatomy of Skeletal Muscle Sarcolemma Skeletal Fibers Transverse Tubules and Sarcoplasmic Reticulum

Sarcoplasm

Sarcomeres: Functional Units of Skeletal Muscle Thick Filaments Thin Filaments

Muscle Action Through Excitation-Contraction

Excitation-Contraction Coupling Contraction-Sarcomere Shortening and Force Development Cessation of Muscle Contraction Muscle Movement

Performance Characteristics of Skeletal Fibers

Classifying Muscle Fiber Types Fiber Type Characteristics

Control of Force Output

Size Principle of Motor Unit Recruitment Electromyography (EMG) Length-Tension Relationship Force-Velocity and Power-Velocity Relationships Muscle Architecture Stimulating Frequency Stretch-Shortening Cycle

Exercise-Induced Muscle Damage

Phases of Exercise-Induced Muscle Damage Repair of Exercise-Induced Muscle Damage Muscle Adaptations to Eccentric Exercise Delayed-Onset Muscle Soreness

CHAPTER 7 BIOENERGETICS: HOW MUSCLE USES OXYGEN

Bioenergetics: Energy Flow in Living Organisms

Laws of Thermodynamics Gibbs Energy

Energy Pathways: A Series of Enzymatic Reactions Enzymes Rate-Limiting Enzymes

Exergonic and Endergonic Reactions

Energy Fuels Stored in the Body

Carbohydrates Glycogen Maintaining Blood Glucose Concentration Fats

Proteins

ATP: The Universal Energy Currency

Synthesizing ATP

Substrate-Level Phosphorylation Glycolysis Oxidative Phosphorylation Citric Acid Cycle Electron Transport Chain (ETC) ATP Yield from Carbohydrate Metabolism Fatty Acid Metabolism

CHAPTER 8 ENERGY METABOLISM: USING OXYGEN DURING EXERCISE

Energy Pathways During Exercise

ATP Production at Onset of Exercise ATP Production for Prolonged Exercise

Matching ATP Production with ATP Use

Control of ATP Production Creatine Shuttle

Influence of Circulating Hormones on ATP Production Insulin and Glucagon The Catecholamines: Epinephrine and Norepinephrine

Exercise Intensity and Duration Determine Fuel Mixture Effect of Exercise Intensity on Fuel Utilization

Effects of Exercise Duration on Fuel Utilization

Lactate Release and Removal from Blood During Exercise

Lactate Appearance Lactate Disappearance

CHAPTER 9 VENTILATORY RESPONSES TO EXERCISE

Oxygen Uptake (V O₂): A Measure of Energy Expenditure

Calculating \dot{VO}_2 from Respiratory Measures Expressing \dot{VO}_2

Determining VO₂ by Cardiac Output and Arteriovenous O₂ Difference

Arteriovenous Oxygen (a $- \bar{v} O_2$) Difference Calculating $\dot{V}O_2$ from Cardiac Output and Arteriovenous O_2 Difference

VO2 Response to Exercise

Oxygen Uptake Kinetics \dot{VO}_2 Response to Constant Work Rate Exercise Oxygen Deficit Excess Post-Exercise Oxygen Consumption (EPOC)

Measuring Aerobic Capacity Through Maximal Oxygen Uptake (V O_{2max})

 \dot{VO}_{2max} in Endurance Athletes Using \dot{VO}_{2max} to Describe Exercise Intensity What Limits \dot{VO}_{2max} ?

Ventilatory Responses to Exercise

VCO₂ and VE Responses to Graded Exercise Ventilatory Threshold and Lactate Threshold Respiratory Exchange Ratio (RER)

CHAPTER 10 ENVIRONMENTAL EFFECTS ON EXERCISE PERFORMANCE

Heat Loss Mechanisms of the Body

Temperature-Dependent Heat Loss Mechanisms Sweat Evaporation

Central Control of Thermal Balance

Temperature Receptors

- Setpoint Temperature
- Heat Transfer from Muscle During Exercise
- Sweat Glands and Sweating

Cardiovascular Responses to Increased Body Temperature

Thermal Stress During Exercise

Exertional Heat Illness Determining Thermal Stress During Exercise Heat Index Responses to Cold Stress During Exercise

Acclimating to Heat Through Exercise

Heat Acclimation's Affect on Core Temperature Heat Acclimation's Affect on Sweat Rate Cardiovascular Adaptations to Heat Acclimation

Exercising at Altitude

Cardiorespiratory Adjustments to Low PO₂ Hormonal Adjustments to Low PO₂ Effects of Erythropoietin on Red Blood Cell Production Effects of Altitude on Exercise Performance Acclimating to Elevation: "Live High, Train Low"

CHAPTER 11 FATIGUE AND EXERCISE INTOLERANCE

Peripheral Fatigue

Substrate Depletion Mechanisms of Peripheral Fatigue Product Accumulation Mechanisms of Peripheral Fatigue Pi Accumulation Decreased Ca2+ Release

Reactive Oxygen Species (ROS)

Effects of Central Fatigue on Skeletal Muscle Recruitment

Exercise Intolerance Caused by Peripheral and Central Fatigue Sensory Tolerance Limit of Fatigue

Role of Central Nervous System Neurotransmitters in Central Fatigue

Power-Duration Relationship and Exercise Intolerance

Determining the Power-Duration Relationship and Critical Power W' Is a Constant

Factors Affecting Critical Power and W' What We Know (Or Think We Know) About Fatigue and

Exercise Intolerance